ELSEVIER

" ScienceDirect

Progress in Natural Science 18 (2008) 1417-1422

Available online at www.sciencedirect.com

Progress in
Natural Science

www.elsevier.com/locate/pnsc

An ant colony optimization method for generalized TSP problem

Jinhui Yang®, Xiaohu Shi®, Maurizio Marchese ® Yanchun Liang**

* College of Computer Science und Technology, Jilin University, Key Luboratory of Symbol Computation und Knowledge Engineering
of the Ministry of Education, Changchun 130012, China
bDepartmenl of Information Engineering and Computer Science. University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy

Received 5 February 2008: received in revised form 3 March 2008; accepted 3 March 2008

Abstract

Focused on a variation of the euclidean traveling salesman problem (TSP), namely, the generalized traveling salesman problem
(GTSP), this paper extends the ant colony optimization method from TSP to this field. By considering the group influence, an improved
method is further improved. To avoid locking into local minima, a mutation process and a local searching technique are also introduced
into this method. Numerical results show that the proposed method can deal with the GTSP problems fairly well, and the developed

mutation process and local search technique are effective.

© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.

Keywords: Generalized traveling salesman problem: Ant colony optimization; Mutation; 2-OPT

1. Introduction

The traveling salesman problem (TSP) is a deceptively
simple combinatorial problem. It can be stated very sim-
ply: a salesman spends his time visiting » cities (or nodes)
cychically. In one tour he visits each city just once, and
finishes up where he started. The question is: in what
order should he visit the cities to minimize the distance
traveled? TSP became a benchmark for many new
approaches in combinatorial optimization {1-6]. A large
number of publications have been dedicated to study
the TSP problem, together with some of its variations.
The generalized TSP (GTSP) is a very simple but practical
extension of TSP. In the GTSP problem, the set of nodes
is the union of m clusters, which may or may not be inter-
sected. Each feasible solution of GTSP, called a g-tour, is
a closed path that includes at least one node from each

" Corresponding author. Tel.: +86 431 85153829 fax: +86 431
85168752.
E-mail address: ycliang@jlu.edu.cn (Y. Liang).

cluster, and the objective is to find a g-tour with the min-
imum cost. In a special case of GTSP, called E-GTSP,
each cluster is visited exactly once.

GTSP was introduced by Henry-Labordere [7], Saksena
(8] and Srivastava [9]in the context of computer record bal-
ancing and of visit sequencing through welfare agencies
since the 1960s. A wide variety of real world problems
can be modeled as GTSP. In fact, TSP could be considered
as a specific form of GTSP. Therefore, many researchers
have focused on this interesting model and developed many
efficient methods. The former methods were mainly based
on dynamic programming [7-10], which could transfer
GTSP into TSP. In 1993, Fischetti [11] developed a
branch-and-cut algorithm for the GTSP problems. Unfor-
tunately, these methods could only cope with small GTSP
problems for their low efficiencies. Recently, some heuristic
algorithms have been proposed to solve the GTSP prob-
lems. Snyder and Daskin proposed a hybrid GTSP solving
algorithm based on random-key GA and local search
method (HRKGA) [12]. By designing a generalized
chromosome, Wu et al. have developed a generalized

1002-0071/3 - see front matter © 2008 National Natural Scicnce Foundauon of China and Chinese Academy ol Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.
doi:10.1016/j.pnsc.2008.03.028

1418 J. Yang et al.| Progress in Natural Science 18 (2008) 1417-1422

chromosome-based genetic algorithm [13]. The generalized
chromosome could unify the GTSP and TSP problems into
one uniform mode by introducing “super vertex”. Tasgeti-
ren et al. [14] and Shi et al. [15] have proposed two discrete
PSO-based algorithms for GTSP, respectively. More
recently, a generalized chromosome genetic algorithm is
analyzed and applied to consistently solve the GTSP and
the classical TSP [16].

Inspired by the foraging behavior of ant colonies, Dor-
igo et al. developed the ant colony optimization (ACO)
which is applied to the TSP [17]. From that many advanced
ACO algorithms have been proposed. Typical of these are
Ant System with elitist strategy and ranking (ASrank) [18],
Ant Colony System (ACS) [19], and MAX-MIN Ant Sys-
tem (MMAS) [20]. And the application fields of ACO have
been extended from TSP to the quadratic assignment prob-
lem, scheduling problem, and vehicle routing problem (see
[21] for an introduction and overview).

Focusing on the GTSP problem, this paper proposes an
ACO-based schedule and extended ACO application to this
practical field. For brevity of the presentation, only E-GTSP
will be considered in this paper. A mutation process and a
local searching technique are also introduced into this
method. To test the effectiveness of the proposed method,
20 GTSP problems are examined as benchmarks. Numerical
results show that the proposed method can deal with the
GTSP problems fairly well, and the developed mutation
process and the local search technique are effective.

2. Generalized traveling salesman problem

The generalized traveling salesman problem (GTSP) has
been introduced by Henry-Labordere, Saksena and Sri-
vastava in the context of computer record balancing and
of visit sequencing through welfare agencies since the
1960s. The GTSP represents a kind of combinatorial opti-
mization problem. It can be described as the problem of
seeking a special Hamiltonian cycle with the lowest cost
in a complete weighted graph. Let G = (X, E, W) be a com-
plete weighted graph, where

X =(x,x,...,%x,) (n>3)
E = {e;|x,.x, GX}
and

W ={wjw,; >0 and w;=0,Vije{l,2,...,n}

are vertex set, edge set and cost set, respectively. The vertex
set X is partitioned into m possibly intersecting groups X,

Xs, ..., X, with |X,| > 1and X = J X,. The special Ham-
=1

iltonian cycle is required to pass through all of the groups,
but not all of the vertices differing from that of the TSP.
For convenience, we also call W as the cost matrix and take
it as W = (w;,),.,- There are two different kinds of GTSP
under the abovementioned framework of the special Ham-
iltonian cycle: (1) the cycle passes exactly one vertex in each

group and (2) the cycle passes at least one vertex in each
group. In this paper we only discuss the GTSP for the first
case, namely, the E-GTSP.

3. Ant colony optimization for TSP

The ACO is developed according to the observation that
real ants are capable of finding the shortest path from a food
source to the nest without using visual cues. To illustrate how
the “‘real” ant colony searches for the shortest path, an exam-
ple from [22] will be introduced for better comprehension. In
Fig. 1(a), suppose A is the food source and E is the nest. The
goal of the ants is to bring the food back to their nest. Obvi-
ously, the shorter paths have advantage compared with the
longer ones. Suppose that at time ¢ = 0 there are 30 ants at
point B (and 30 at point D). And at this moment there is
no pheromone trail on any segments. So the ants randomly
choose their path with equal probability. Therefore, on the
average 15 ants from each node will go toward H and 15
toward C (Fig. 1(b)). At r = 1 the 30 new ants that come to
B from A find a trail of intensity, 15 on the path that leads
to H, laid by the 15 ants that went that way from B, and a trail
of intensity 30 on the path to C, obtained as the sum of the
trail laid by the 15 ants that went that way from B and by
the 15 ants that reached B coming from D via C (Fig. 1(c}).
The probability of choosing a path is therefore biased, so
that the expected number of ants going toward C will be dou-
ble of those going toward H: 20 versus 10, respectively. The
same is true for the new 30 ants in D which come from E. This
process continues until all of the ants will eventually choose
the shortest path.

Given an n-city TSP with distances dy, the artificial ants
are distributed to these # cities randomly. Fach ant will
choose the next to visit according to the pheromone trail
remained on the paths just as mentioned in the above
example. However, there are two main differences between
artificial ants and real ants: (1) the artificial ants have
“memory”; they can remember the cities they have visited
and therefore they would not select those cities again. (2)
The artificial ants are not completely “blind”; they know
the distances between two cities and prefer to choose the

] E} llilr ants {J \\‘ 30 ants
|

Iy

D 15 D |5 | b 2
ey " Sants Y015 ants 10 ants_~_" N\ 20 ants
P N\ P N AN \
H (H (H (
P N p: D &
‘%\ /d=0.5 AN A \<*>\ 7/
\I%/ 15 zmlx\‘\jH ,/I< ants 10 ants N\ B'/"':()Anl\

|‘ %A
J l}il.ml\ [l 30 ants
A A A

a b c

Fig. 1. An example with artificial ants [21]. (a) The initial graph with
distances. (b} At time r = 0 there is no trail on the graph edges; therefore,
ants choose whether to turn right or left with equal probability. (c) At time
= 1 trail is stronger on shorter edges, which are therefore, in the average,
preferred by ants.

J. Yang et al. | Progress in Natural Science 18 (2008) 1417-1422 1419

nearby cities from their positions. Therefore, the probabil-
ity that city j is selected by ant k to be visited after city i
could be written as follows:

B
AR j € allowed,

Yot 11T (1)

0 otherwise

Ko
Py =

where 7 is the intensity of pheromone trail between cities /
and j, « the parameter to regulate the influence of 7, n;; the
visibility of city j from city i, which is always set as 1/d;; (d;
is the distance between city / and j), f the parameter to reg-
ulate the influence of 5; and allowed, the set of cities that
have not been visited yet, respectively.

At the beginning, / ants are placed to the » cities ran-
domly. Then each ant decides the next city to be visited
according to the probability p,-jk given by Eq. (1). After n
iterations of this process, every ant completes a tour. Obvi-
ously, the ants with shorter tours should leave more pher-
omone than those with longer tours. Therefore, the trail
levels are updated as on a tour each ant leaves pheromone
quantity given by Q/L,, where Q is a constant and L, the
length of its tour, respectively. On the other hand, the pher-
omone will evaporate as the time goes by. Then the updat-
ing rule of 7; could be written as follows:

‘L'u(f + 1) =p- T,’j(l) + AT’J (2)
!
gyt (3)
=1
At = { Q/L; if ant k travels on edge (i,) “
’ 0 otherwise

where ¢ is the iteration counter, p € [0, 1] the parameter to
regulate the reduction of 7, At the total increase of trail
level on edge (i,j) and Ar[," the increase of trail level on
edge (i,j) caused by ant k, respectively.

After the pheromone trail updating process, the next
iteration ¢ + 1 will start. Fig 2 is the pseudo-code of the
algorithm.

4. Ant colony optimization method for GTSP
4.1. Extended ACO method for GTSP

In GTSP problem, the n cities are divided into m groups.
Each group should be visited by exactly one city. Similarly as

Initialize
For =1 to iteration number do
For k=1 to / do
Repeat until ant k£ has completed a tour
Select the city j to be visited next
With probability p; given by Eq. (1)
Calculate L,
Update the trail levels according to Eqgs. (2-4).
End

Fig. 2. Pseudo-code of ACO for TSP,

ACO for GTSP, the probability that city j is selected by ant k
to be visited after city i is computed according to two factors,
namely, that the pheromone trail quantity distributed on the
paths and the visibility of city j from city i. But the ants must
be able to identify the cities in the same classes of the ones
having been visited. A simple idea is that the probability
should also be computed by Eq. (1), where the set allowed),
has different meaning. It is the set of cities which are in the
classes having not been visited by ant &. And the updating
rule of 7;; is also followed by Eqs. (2)—(4). Denote visited).
and rabuy, as the set of visited cities and the set of groups hav-
ing been visited by ant &, respectively. Then

allowed, = {x|x € X and x § G,YG € tabu;}

The formally extended ACO algorithm for GTSP is

1. Initialize:
Set time:=0 {time 1s time counter}
For every edge (i.j) set an initial t; = ¢ for trail density
and Ar; =0.
2, Set 5:=0 {s is travel step counter}
For k=1 to / do
Place ant k£ on a city randomly. Place the city in visited,.
Place the group of the city in tabu.
3. Repeat until s < m
Set s1=s+ 1
For k:=1 to / do
Choose the next city to be visited according to the
probability p,_-,-k given by Eq. (1).
Move the ant & to the selected city.
Insert the selected city in visited,.
Insert the group of selected city in taby,.
4. For k:=1to [do
Move the ant k from visited,(n) to visited,(1).
Compute the tour length L, traveled by ant k.
Update the shortest tour found.
For every edge (i,)) do
For k:=1 to / do
Update the pheromone trail density t;; according to Egs.
(2)4).
time:=time + 1
5. If (time<TIME_MAX) then
Empty all visited, and tabu,
Goto Step 2.
Else
Print the shortest tour.
Stop

4.2. ACO for GTSP considered group influence

The above algorithm could extend ACO from TSP to
GTSP simply with a minor modification of the construc-
tion for the set allowed,. But the previous algorithm does
not consider the influence of group when selecting the next
city to be visited. To our intuition, when two cities are
neighbors in the tour, their groups always have a short

1420 J. Yang et al. | Progress in Nawral Science 18 (2008) 1417-1422

“distance”. So another factor should be considered when
selecting the next city, namely, that the cities in those
groups near to the current city are preferred to be selected.
For a city j, denote C{j) as the group that contains city j.
Then the probability that city j is selected by ant k to be vis-
ited after city i could be re-written as follows:

[le]i ’ ["i]]ﬁ 'qf'(C(j)

j € allowed,

LI P!
pif - Zseallowedk [Tis] ’ [”lx]ﬁ ’ qu(s) (5)
0 otherwise
where
a B
g Tir] My
R %
9u erallowedk [TU] [”ls] (
0 otherwise

is the factor of group influence. Obviously, ¢;* has the lar-
ger value when the rth group G, is “nearer” to the group
contained city i. Therefore, this method is all the same with
the above basic idea method except for that p,,-k should be
computed by Egs. (5), (6) instead of Eq. (1).

4.3. Mutation process

In order to avoid to be locked into local minima, the
mutation idea is introduced from the Genetic Algorithm.
After an ant completes its tour, it will perform the muta-
tion process according to the given mutation probability
Pmute- In the process, a city is randomly removed from
the tour, replacing the city with another city randomly cho-
sen from the same group, and finally the randomly chosen
city is inserted into the m — 1 slots. The shortest tour of all
the potential ones, including the original tour, is the new
solution of the concerned ant. Denote N(i.j) as the jth city
of the ith group. The pseudo-code of the mutation process
can be shown by Fig. 3.

4.4. 2-OPT local search

To speed up the convergence, a local searching tech-
nique called “2-OPT Local search” [23] is used in the pro-
posed method. The function of the process could be

Randomly select ¢, let O<t<m
Randomly select s, let 0<s<IXcuisireaq!
For i:=1 to m-1 do
Insert the node N(visited(t), s) after the ith

node, compute the length Z,.

Find the shortest Z

‘shortest

If (Lshartest < L”’igi'l)

Update the tour with the shortest one
End

Fig. 3. Pseudo-code of the mutation process.

considered as to delete the crossover of traveling lines.
The 2-OPT local search basically removes two edges from
the tour, and reconnects the two paths created. There is
only one way to reconnect the two paths so that we still
have a valid tour (Fig. 4). We do this only if the new tour
will be shorter. It means that a crossover point is deleted in
the original tour. The pseudo-code of the 2-OPT process 1s
shown as Fig. 4 and the schematic diagram is shown by
Fig. 5, respectively.

5. Numerical simulation

To verity the validity of our proposed methods, we cal-
culate 20 instances on a PC with 1.8 GHz processor and 1G
memory. These instances can be obtained from TSPLIB
library [24] and were originally generated for testing stan-
dard TSP algorithms. To test GTSP algorithms, Fischetti
et al. [11] provided a partition algorithm to convert the
instances used in TSP to those which could be used in
GTSP. Because the partition algorithm can generate the
same results at different experiments provided that the data
order are the same, the partition algorithm can be used to
generate test data for different algorithms.

In the experiments, basic extended ACO method, ACO
considered group influence, ACO considered group influ-
ence plus mutation process, ACO considered group influ-
ence plus 2-OPT and (5) ACO considered group influence
plus both mutation process and 2-OPT were all performed
five times. By trial and error, the mutation probability pmue
was selected as 0.05 in all experiments. The results of com-
parison are shown in Table 1. The first column represents
the names of the test instances, the second column repre-
sents the exact optimal tour length for each problem given
in Ref. [12], and the third to the twelfth columns represent
the minimum and average lengths obtained by the above
five methods, respectively. From Table 1 it can be noticed

For i:=1 to i<m-3 do
For j:=i+2 to j<m do
If (d i 4d; e >d rdiy 1)
For k:=0 to k<(j-1)/2 do
SWap(Xjg, Xisksl)-

Fig. 4. The pseudo-code of the 2-OPT process.

—
N

5/\

|
OP1
.
proc)

i+2 X. L] 4
) i

Fig. 5. Schematic diagram of the 2-OPT process.

J. Yung et al | Progress in Natural Science 18 (2008) 1417--1422

1421

Table 1
Comparison results of the five proposed methods for benchmark test problems
Problem Opt Method 1 Method 2 Method 3 Method 4 Method 5

Min Ave Min Ave Min Ave Min Ave Min Ave
11EIL51 174 176 178.8 176 177.8 176 176.8 176 177.8 176 176
148T70 316 315 320.2 316 318.8 315 3174 315 316.6 315 315.2
16EIL76 209 214 216 214 216.6 214 214.4 214 2164 214 2152
16PR76 64825 65078 65985.4 65078 65994.6 65157 65880.6 65253 66056 65059 65125
20KROA100 9711 9765 9892.8 9753 9834.2 9753 9822 9753 9759.8 9758 9777.6
20KROC100 9554 9859 9956.8 9579 9769.8 9569 9646 9569 9706.8 9569 9634.4
20KROD100 9450 9651 9736.2 9532 9682.4 9493 9517 9493 9648.4 9481 9555
20KROE100 9523 9648 9732.6 9651 9726.2 9560 9650.6 9560 9685.4 9535 9616.2
20RAT99 497 503 507.8 503 507 503 506.2 503 507.6 503 507.6
20RD100 3650 3712 3749.6 3712 3727 3705 3741.6 3718 37494 3705 3744
21EIL10] 249 259 263.6 259 264.6 259 266 259 264.6 259 266.8
21LINI10S 8213 8290 8314 8253 8293 8213 8255.2 8213 8267 8213 82354
22PR107 27898 27901 27940.6 27901 27937.8 27901 27934.8 27901 279554 27898 27933
25PR124 36605 37272 37730 37047 37500.4 36903 37232.2 36903 37104.2 36903 37183.8
29PR144 45886 46700 47148.8 46216 46828.2 45989 46478.4 45989 46034.4 45989 46084.2
30KROAIS0 11018 11470 11750.4 11594 11674.8 11470 11618 11568 11618.2 11470 11540.8
30KROBI150 12196 12698 12879.8 12763 12990.8 12737 12904.8 12887 13055.2 12763 13156
31PR152 51576 52465 52809 51602 52151.2 52441 52791.6 51690 52376.8 51602 52221
320159 22664 22897 231378 22897 23144.2 22909 23236.6 22964 23328.6 22897 23391.2
40D198 10557 10681 10818.6 10687 10843.6 10681 10794 10681 10842.4 10681 10793

that in all the 20 instances, the fifth method obtains nine best
average results, while those of the first, the second, the third
and the fourth are 3, 2, 3, and 3, respectively. It is also easy to
see that the last method has the best performance among the
five methods for these 20 instances. Comparing the results of
the first and the second method, we could find that the second
method possesses 14 better results while that of the first
method is only 6. Similarly, the third method possesses 16
better results than the second method and the other four
results are reversed. The fourth method possesses 11 better
results than the second method and seven results are
reversed, of the other two results the two methods obtain

Table 2

the same results. These comparisons indicate that the consid-
eration of group influence in GTSP problem could improve
the performance of the original ACO method, as well as that
the introduction of both mutation process and 2-OPT local
search could get better results.

Table 2 shows the results of the fifth method. The first
column represents the names of the test instances, the sec-
ond column represents the exact optimal tour length for
each problem given in Ref. {12], the third column repre-
sents the best result obtained, the fourth to the eighth col-
umns represent the results in each run time, the ninth
column represents the average result and the tenth column

Results of ACO considered group influence plus both mutation process and 2-OPT

Problem Opt Best result Run 1 Run 2 Run 3 Run 4 Run 5 Average Err (%)
11EIL5I1 174 176 176 176 176 176 176 176 1.15
14ST70 316 315 315 315 316 315 315 315.2 0
16EIL76 209 214 214 216 214 216 216 215.2 2.97
16PR76 64825 65059 65253 65059 65078 65157 65078 65125 0.46
20KROA100 9711 9758 9758 9838 9758 9769 9765 9777.6 0.69
20KROC100 9554 9569 9624 9780 9579 9569 9620 9634.4 0.84
20KRODI10D 9450 9481 9520 9761 9481 9493 9520 9555 1.11
20KROE100 9577 9535 9651 9684 9535 9651 9560 9616.2 0.41
20RATS9 497 503 514 503 506 503 512 507.6 2.13
20RD100 3650 3705 3823 3756 3718 3718 3705 3744 2.58
21EILI10L 249 259 263 274 269 259 269 266.8 7.15
21LIN105 8213 8213 8271 8213 8267 8213 8213 82354 0.27
22PR107 27898 27898 27970 27995 27901 27898 27901 27933 0.13
25PR124 36605 36903 37036 37272 36903 37354 37354 37183.8 1.58
29PR 144 45886 45989 46238 45989 45989 45989 46216 46084.2 0.43
30KROA150 11018 11470 11585 11585 11470 11490 11574 11540.8 4.74
30KROBI50 12196 12763 12958 13157 13207 12763 13695 13156 7.87
31PR152 51576 51602 51602 53025 51851 53025 51602 52221 1.25
320159 22664 22897 24026 23424 22897 23424 23185 23391.2 RIS
40D198 10557 10681 10863 10863 10695 10863 10681 10793 2.24

1422 J. Yang et al. | Progress in Nutural Science 18 (2008) 1417-1422

represents the relative error (Err), respectively, where the
relative error is calculated as

Err — Ave — Opt

x 100% (7)
From Table 2 it can be seen that in all the simulations
among the 20 test problems, the minimum relative error
is 0, the maximum relative error is 7.87%, and the average
relative error is 2.06%. There are some differences in the
optimal results for different instances. It might be caused
by the complexity of the path.

6. Conclusions

Focused on the generalized traveling salesman problem,
" this paper extends the ant colony optimization method
from TSP to this field. Based on the basic extended ACO
method, we developed an improved method by considering
the group influence. To avoid locking into local minima, a
mutation process is also introduced into this method.
Moreover, a local searching technique, namely, 2-OPT
search is applied.

The 20 benchmark instances from TSPLIB library [24]
are used to test the effectiveness of our proposed methods.
The numerical results show that the consideration of group
influence in GTSP problem improves the performance of
the basic extended ACO method. Furthermore, when the
mutation process and/or 2-OPT local search are used, the
results are all better than before, especially when the two
processes are both used. Our proposed methods could get
fairly good results when the problem scale is less than
200 cities.

Acknowledgements

This work was supported by National Natural Science
Foundation of China (Grant Nos. 60673023, 60433020,
60703025, 10501017) and the European Commission for
TH/Asia Link/010 (111084).

References

{11 Bellmore M, Nemhauser GL. The traveling salesman problem: a
survey. Oper Res 1968;16:538-58.

[2] Goldberg DE. Messy genetic algorithms: motivation, analysis, and
first results. Complex Syst 1989;3:493-530.

[3] HuangL, Zhou CG, Wang KP. Solving constrained traveling salesman
problems by genetic algorithms. Prog Nat Sci 2003;13:295-9.

[4] Liang YC, Ge HW, Zhou CG, et al. Solving traveling salesman
problems by genetic algorithms. Prog Nat Sci 2003;13:135-41.

[5] Wu CG, Liang YC, Lee HP, et al. Hybrid ant colony algorithm for
traveling salesman problem. Prog Nat Sci 2004;14:631-7.

[6] Chatterjee S, Carrera C, Lynch LA. Genetic algorithms and traveling
salesman problems. Eur J Oper Res 1996;93(3):490-510.

[7] Henry-Labordere AL. The record balancing problem: a dynamic
programming solution of a generalized traveling salesman problem.
RIRO B 1969;2:43-9.

[8] Saskena JP. Mathematical model for scheduling clients through
welfare agencies. CORS J 1970;8:185-200.

[9] Srivastava SS. Generalized traveling salesman problem through » sets
of nodes. CORS J 1969;7:97-101.

[10] Chentsov AG, Korotayeva LN. The dynamic programming method
in the generalized traveling salesman problem. Math Comput Model
1997;25:93-105.

[11] Fischetti M, Salazar JJ, Toth P. A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Oper Res
1997:45:378-94.

[12] Snyder LV, Daskin MS. A random-key genetic algorithm for the
generalized traveling salesman problem. Eur J Oper Res
2006:174:38-53.

[13] Wu CG. Liang YC, Lee HP, et al. A generalized chromosome genetic
algorithm for generalized traveling salesman problems and its
applications for machining. Phys Rev E 2004;70:016701.

[14] Tasgetiren MF, Suganthan PN, Pan QK. A discrete particle swarm
optimization algorithm for the generalized traveling salesman prob-
lem. In: Proceedings of the ninth annual conference on genetic and
evolutionary computation; 2007. p. 158-67.

[15] Shi XH, Liang YC, Lee HP, et al. Particle swarm optimization-based
algorithms for TSP and generalized TSP. Int Process Lett
2007;103:169-76.

[16] Yang JH, Wu CG, Lee HP, et al. Solving traveling salesman
problems using generalized chromosome genetic algorithm. Prog Nat
Sci 2008;18(7):887-92.

[17] Dorigo M. Optimization, learning and natural algorithms [in Italian].
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy;
1992. p. 140.

[18] Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by
a colony of cooperating agents. IEEE Trans Syst Man Cybern B
1996;26(1):1-13.

[19] Dorigo M, Ganbardella L. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Trans Evol
Comput 1997;1(1):53-66.

[20] Stutzle T. Hoos HH. The maxmin ant system and the local search for
the traveling salesman problem. In: IEEE international conference on
evolutionary computing, Piscataway, NJ; 1997. p. 309-15.

[21] Dorigo M, Caro GDi. The ant colony optimization meta-heuristic.
In: New ideas in optimization. London: McGraw-Hill; 1999. p.
11-32.

[22] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a
colony of cooperating agents. 1EEE Trans Syst Man Cybern
1996:26:29-41.

[23] Voudouris C, Tsang E. Guided local search and its application to the
traveling salesman problem. Eur J Oper Res 1999;113:469-99.

[24] Reinelt G. TSPLIB — a traveling salesman problem library. ORSA J
Comput 1991;3:376-84.

